Forest burned area detection with time series data based on Stacked ConvLSTM

نویسندگان

چکیده

ç¡®å®šæ£®æž—ç«çƒ§è¿¹åœ°çš„å‡†ç¡®æ—¶é—´ç‚¹ä»¥åŠç©ºé—´èŒƒå›´å¯¹äºŽæ£®æž—çš„å—æŸè¯„ä»·ã€ç®¡ç†ã€ç¢³æ ¸ç®—ä»¥åŠæ£®æž—æ¢å¤çš„ç®¡ç†æœ‰é‡è¦æ„ä¹‰ã€‚ç”±äºŽæ£®æž—ç«çƒ§è¿¹åœ°åœ¨ç©ºé—´åˆ†å¸ƒä¸Šå ·æœ‰ä¸€å®šçš„è¿žç»­æ€§ï¼ŒçŽ°æœ‰çš„æ£®æž—ç«çƒ§è¿¹åœ°æå–æ–¹æ³•å¤§éƒ½é‡‡ç”¨å ˆåˆ†ç±»å†åŽå¤„ç†çš„ä¸¤æ­¥å¤„ç†ç­–ç•¥æ¥æŠ‘åˆ¶è™šè­¦åƒç´ çš„å½±å“ã€‚æœ¬æ–‡æå‡ºå°†æ—¶ç©ºæ£€æµ‹æ–¹æ³•Stacked ConvLSTMç”¨äºŽæ—¶é—´åºåˆ—æ£®æž—ç«çƒ§è¿¹åœ°çš„æ£€æµ‹ï¼Œåœ¨ä¿æŒç»“æžœå ·æœ‰è¾ƒå¥½ç©ºé—´è¿žç»­æ€§çš„åŸºç¡€ä¸Šé¿å äº†å ·æœ‰ä¸»è§‚æ€§çš„åŽå¤„ç†æ“ä½œï¼Œå®žçŽ°ç«¯åˆ°ç«¯æå–æ£®æž—ç«çƒ§è¿¹åœ°ä¿¡æ¯ï¼Œæå‡äº†æ£®æž—ç«çƒ§è¿¹åœ°çš„æå–ç²¾åº¦ã€‚é‡‡ç”¨MODIS时间序列数据,基于2001年—2008年以及2001年—2016å¹´çš„é»‘é¾™æ±Ÿæ²¾æ²³æž—ä¸šå±€ä¼Šå—æ²³æž—åœºå’Œå† è’™å¤è‡ªæ²»åŒºæ¯•æ‹‰æ²³æž—ä¸šå±€åŒ—å¤§æ²³æž—åœºä¸¤ä¸ªåŒºåŸŸçš„åŽ†å²æ—¶é—´åºåˆ—ï¼Œåˆ†åˆ«å¯¹è¿™ä¸¤ä¸ªåŒºåŸŸ2009年以及2017年发生的特大火灾区域进行火烧迹地检测,利用Stacked ConvLSTM、Stacked LSTM以及bfast算法在两个区域的MODIS时间序列中提取森林火烧迹地,并将火烧迹地检测结果与ESA发布的Fire_CCI 5.1ç«çƒ§è¿¹åœ°äº§å“è¿›è¡Œå¯¹æ¯”åˆ†æžã€‚ç»“æžœè¡¨æ˜Žï¼šé¦–å ˆï¼Œä»Žç›®è§†æ•ˆæžœæ¥çœ‹ï¼Œåœ¨ç ”ç©¶åŒºåŸŸâ ,Stacked ConvLSTM检测的结果比Stacked LSTM和bfastç®—æ³•é”™è¯¯æ£€æµ‹ç‚¹å°‘ï¼Œå¹¶ä¸”åœ¨ç©ºé—´åˆ†å¸ƒä¹Ÿä¿æŒè¾ƒé«˜è¿žç»­æ€§ï¼›åœ¨ç ¡ï¼ŒStacked ConvLSTMæ£€æµ‹åˆ°äº†è¾ƒå®Œæ•´çš„ç«çƒ§è¿¹åœ°åŒºåŸŸã€‚å ¶æ¬¡ï¼Œåœ¨å®šé‡çš„ç²¾åº¦è¯„ä»·æŒ‡æ ‡ä¸Šï¼Œåœ¨ç ConvLSTM的精确度比Stacked LSTM和bfast算法分别高出0.120和0.405,并且召回率、准确度和F1-score也更高,Fire_CCI 5.1å¬å›žçŽ‡è™½æ›´é«˜ï¼Œç”±äºŽé”™æ£€åŒºåŸŸè¾ƒå¤§ï¼Œå ¶ä»–ç²¾åº¦æŒ‡æ ‡è¿œä½ŽäºŽStacked ConvLSTM;在ç ConvLSTM精确度达0.924,召回率、准确度和F1-score相比Stacked LSTM和bfast算法以及Fire_CCI 5.1更高。

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Detection of Trends in Time Series of Functional Data

A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...

متن کامل

Patch-Based Forest Change Detection from Landsat Time Series

In the species-rich and structurally complex forests of the Eastern United States, disturbance events are often partial and therefore difficult to detect using remote sensing methods. Here we present a set of new algorithms, collectively called Vegetation Regeneration and Disturbance Estimates through Time (VeRDET), which employ a novel patch-based approach to detect periods of vegetation distu...

متن کامل

Data mining of time series using stacked generalizers

Data mining is the search for valuable information in large volumes of data. Finding patterns in time series databases is important to a variety of applications, including stock market trading and budget forecasting. This paper reports on an extension of neural network methods for planning and budgeting in the State of Utah. In particular, historical time series are analyzed using stacked gener...

متن کامل

Anomaly Detection in Time Series of Chlorophyll Around the Time and Location of Large Coastal Earthquakes Using Random Forest Method

Earthquake is one of the most devastating natural hazards which efforts to predict the time, location and magnitude of it have not been yet completely successful. Remote Sensing data is proved to be an effective source of information about lithospheric and atmospheric activities around the impending earthquakes which are referred to as earthquake precursors. The issue of detecting anomalies in ...

متن کامل

Extended Data-Based Mechanistic Method for Improving Leaf Area Index Time Series Estimation with Satellite Data

Leaf area index (LAI) is one of the key parameters in crop growth monitoring and global change studies. Multiple LAI products have been generated from satellite observations, many of which suffer from data discontinuities due to persistent cloud contamination and retrieval algorithm inaccuracies. This study proposes an extended data-based mechanistic method (EDBM) for estimating LAI time series...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of remote sensing

سال: 2022

ISSN: ['1007-4619', '2095-9494']

DOI: https://doi.org/10.11834/jrs.20210471